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ABSTRACT 

This study examined particles created by laser-driven hydrothermal processing, an 

innovative technique used for the ablation of submerged materials. Two naturally 

occurring materials, obsidian and tektite, were used as targets for this technique. 

Characterization of sample materials before and after laser processing was conducted 

through multiple techniques, such as optical microscopy, X-ray diffraction, scanning 

electron microscopy, transmission electron microscopy, and energy dispersive X-ray 

spectroscopy. 

Examination of the untreated base material, in bulk and crushed form, established 

a baseline for comparison to particles created by laser processing of the same material. 

Characterization methods provided data of micron- and nano-sized particles, including 

their crystal structure, microstructure, and chemical composition.     

The bulk and crushed obsidian and tektite samples contained inclusions and 

particles rich in several transition elements, most notably iron and titanium. Analysis of 

liquid media collected after laser processing of bulk obsidian and tektite samples revealed 

fine particles rich in the same elements. Evidence suggests laser-driven hydrothermal 

processing separates heavy elements from the mostly amorphous silica matrix 

encountered in the materials examined.  
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I. INTRODUCTION 

A. MOTIVATION 

Nuclear forensics is the analysis of nuclear or radioactive materials to gather 

evidence and determine the original source [1]. Nuclear or radioactive material can come 

from a seized nuclear weapon or from debris following a nuclear event. Central to 

nuclear forensics, investigators rely on physical, chemical, and/or isotopic analysis of 

these materials to piece together relevant data [2], [3]. This helps investigators determine 

where the materials originated from and develop a relationship between the material 

characteristics and its process history [1].  

Analysis methods require techniques that collect the material without 

contamination while ensuring no loss of sample material [4]. A particular method of 

collecting material for analysis includes the comminution of refractory materials through 

a novel technique termed laser-driven hydrothermal processing developed by Dr. 

Raymond P. Mariella Jr., Senior Scientist, at Lawrence Livermore National Laboratory 

(LLNL) in Livermore, CA. This technique enables the user to rapidly comminute 

material without contamination, while being environmentally safe and field deployable 

[5]. This method may be applied primarily by U.S. nuclear-related agencies, potentially 

with U.S. Department of Homeland Security and Department of Defense partners. 

Civilian agencies and industry can find this technique especially useful for conventional 

methods of chemical analysis of a material when small quantities are available. There is 

an issued patent and pending patent application for use of the technology for other 

applications such as decontamination of building and structures of nuclear facilities, 

especially during decommissioning or nuclear-related accident [6], [7]. Additionally, this 

technique has been shown to be implemented remotely with a robotic system avoiding 

the risk of exposure to personnel [8]. 

B. BACKGROUND 

Laser-driven hydrothermal processing (LDHP) is an innovative technology 

developed to comminute material in a submerged environment. Using a neodymium-doped 
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yttrium lithium fluoride (Nd:YLF) slab laser in a 2013 study [4], LDHP was used in the 30 

MW/cm2 and 500 MW/cm2 intensity range using 15-ns, 351-nm laser pulses with an energy 

range of 1 J to 0.35 J to strike impure, non-metallic materials (quartzite and concrete) 

submerged in water. Mariella et al. [4] observed that at these conditions, LDHP dissolved or 

converted material from a solid substrate into ultrafine particles in a controlled method. 

Ablation of solid substrates was also studied at LDHP parameters below 100 MW/cm2 

intensity and 0.4 J/cm2 fluence. Figure 1 is an image of the arrangement of an experiment 

showing the path of the laser through the liquid to strike the sample surface. 

 

  
Figure 1.  General arrangement of experiment showing the path of laser to 

sample (left) and closer view of a sample in holder with particle 
cloud (right). Source: [4]. 

 

This process appeared to neither cause chemical reactions nor induce boiling or 

sublimation in tested material. However, analysis of the results of experiments on 

quartzite (Figure 2) and concrete appeared to support the notion that surface material was 

transiently dissolved and redeposited onto the surface. In Figure 2, note the seven craters 

created by LDHP as indicated by the blue arrows. 
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Figure 2.  Images of quartzite before (left) and after (right) LDHP treatment. 
Treated sample exposed to 351-nm, 15-ns laser pulses: upper three 
craters with 7 J/cm2 fluence at 0.5 GW/cm2 intensity and lower four 
craters with 3.5 J/cm2 at 0.25 GW/cm2 intensity. Adapted from [4]. 

Data suggested that a thin layer of high-pressure, high-temperature water created 

by the laser pulses transiently dissolves the material surface. It is thought that when this 

thin-layer returns to atmospheric pressure and near-ambient temperature, the dissolved 

material precipitates as suspended particles in the liquid media, or as SiO2 crystals at the 

target surface (in the case of the quartzite target) [4]. Figure 3 provides an overview of 

LDHP on a material composed of SiO2. 

Figure 3.  Image of LDHP removing surface material and suspension of 
particles in liquid media. Adapted from [4]. 
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At the time of the experiments conducted in [4], it was thought that the formation 

of SiO2 crystals that surround the surface removed potentially indicated that suspended 

particles created by LDHP also consisted primarily of SiO2. Additionally, it was 

unknown which material elements were transiently and/or permanently dissolved when 

exposed to LDHP. Therefore, electron microscopy techniques, including EDS analysis, 

were required to study the suspended particles produced by LDHP and the mechanisms 

involved.  

Two naturally occurring materials, obsidian and tektite, were selected for this 

study for two reasons: (i) Both materials are compositionally high in SiO2 and (ii) form 

similarly to glass formed by a nuclear explosion, which creates massive pressures and 

temperatures. As an example, trinitite is a glass formed by a post-nuclear event with SiO2 

making up 50%-75% of its chemical composition [3], [9]. Obsidian forms under high 

pressure and temperature by volcanic activity and tektite forms as a result of meteoritic 

impact on earth’s surface, with both being compositionally high in SiO2 [10]-[12]. 

C. FOCUS OF PRESENT STUDY 

Due to the unknown composition of the suspended particles and mechanisms 

involved in their creation by LDHP, this study focused on the methodical characterization 

of these particles and the exposed material surface. Based on experiments from [4], 

particles produced varied in size from a few microns to less than 50 nm. Therefore, the 

use of electron microscopy techniques were best suited for analysis. This was the first 

detailed study of the suspended particles created by LDHP, including the base material 

and particles found in and around the LDHP treated areas. The results contained herein 

provided the critical first step in understanding how these particles form and how LDHP 

comminutes the surface of a material in a liquid environment. 

D. APPROACH 

Characterization techniques were conducted through optical microscopy, X-ray 

diffraction (XRD), scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS) of each material 

before and after exposure to LDHP treatment while submerged in deionized water. These 
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techniques determined material and particle morphology, crystal structure, and chemical 

composition, and what changes, if any, occurred after LDHP. 

This approach paved the way for follow on quantitative studies to include particle 

size analysis to determine particle size distribution, and the role of various LDHP 

parameters in the creation of particles. The results contained in this study were 

instrumental towards determining the mechanism of particle formation.               
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II. EXPERIMENTAL METHODS 

With the core of this study being the characterization the particles created from 

LDHP the first experimental step was to analyze the base materials to create a baseline to 

determine if any changes occurred during laser processing. Initially, one obsidian and 

three tektite bulk samples were received, cut, polished and analyzed. During LDHP, the 

material removed from the substrate produced fine particles that were collected in the 

liquid media. The color of the obsidian studied is black and from visual observations 

made from the particles present in the liquid after LDHP, it was observed that the powder 

collected was optically white/translucent. As part of this study, a small portion of an 

obsidian and tektite bulk sample was manually pulverized with a mortar and pestle, and 

then prepared and analyzed as well. As a result, 10 samples (eight bulk and two crushed) 

established a baseline before treatment with LDHP. Table 1 summarizes those samples. 

 

Table 1.   Summary of material samples. 

 
 

LDHP products were provided from laser processing of one bulk obsidian sample 

and one tektite sample in deionized water. Representative samples of each LDHP product 

in deionized water were provided by LLNL. Samples were centrifuged for 15 minutes at 

12,500 rpm then 2–3 drops placed on mounted carbon tabs and TEM grids and left 

overnight to dry.         
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A. MATERIALS AND EQUIPMENT 

1. Obsidian Samples 

Obsidian samples (Figure 4) were provided by LLNL. Samples originated from 

Lake County, OR.  

 

   
Figure 4.  Bulk obsidian sample. 

 

2. Tektite Samples 

Tektite samples (Figure 5) were purchased from a commercial source (Mama’s 

Minerals, Albuquerque, NM). Samples originated from Indonesia.   

 

 
Figure 5.  Bulk tektite samples. 
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3. Sample Preparation for Analysis

Eight samples were cut from the bulk material (two samples from each) to 2 mm 

thickness. Due to the different sizes and shapes of the bulk material, the length and width 

varied among each sample with an average dimension of 18.5 mm × 10.7 mm. Cutting 

was completed with a Buehler ISOMET low speed saw using a Buehler IsoCut wafering 

blade (Figure 6) at a speed setting of 7 (200 rpm). 

Figure 6.  Buehler ISOMET low speed saw cutting tektite sample. 

Four samples (one sample from each bulk material) was mounted in a conducting 

compound using a Buehler SIMPLIMET 2 mounting press with Buehler PROBEMET 

conductive molding compound (Figure 7). Initial polishing was completed on a Buehler 

ECOMET 4 automatic polisher (Figure 7) at 120 rpm with a 17.8 N (4 lb) load starting 

with 320-grit SiC paper with increasing increments of 500-grit, 1200-grit, 2500-grit, and 

4000-grit SiC paper at 120 rpm with a 26.7 N (6 lb) load. Initial polishing time at each 

grit was approximately 20 minutes. 



10 

Figure 7.  Buehler SIMPLIMET 2 mounting press (left), PROBEMET 
conducting compound (center), and ECOMET 4 automatic polisher 

(right). 

Next, additional polishing was completed using a Buehler ECOMET 3 automatic 

polisher (Figure 8) with a Buehler microcloth pad coated by 1 µm alumina suspension. 

Samples were polished with a 31.1 N (7 lb) load for approximately 60 minutes. 

Figure 8.  Buehler ECOMET 3 automatic polisher. 

Final polishing was conducted on a Buehler VibroMet 2 vibratory polisher 

(Figure 9). All samples were placed in a 0.05 µm alumina suspension at 80% amplitude 
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for approximately 24 hours. Samples were then cleaned in a Buehler ULTRAMET 2005 

sonic cleaner (Figure 9) in deionized water for approximately 30 minutes.   

  

   

Figure 9.  Buehler VibroMet 2 vibratory polisher (left) and ULTRAMET 2005 
sonic cleaner (right). 

 

B. CHARACTERIZATION TECHNIQUES 

1. Optical Microscopy 

A Nikon EPIPHOT 200 inverted optical microscope (Figure 10) was used to 

determine the surface structure of each sample. Images of each mounted sample were 

collected at x25, x100, x200, x500, and x1000 magnification then viewed to analyze 

morphological details of each specimen.      
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Figure 10.  Nikon EPIPHOT 200 optical microscope. 

 

2. X-Ray Diffractometry  

Of the eight samples, part of one bulk obsidian sample and part of one bulk tektite 

sample were crushed using a mortar and pestle. A Rigaku MiniFlex 600 X-ray 

diffractometer (Figure 11) was then used to determine crystallinity of all ten samples 

(eight bulk samples and two crushed samples). XRD measurement conditions were set to 

scan in the 2Ɵ angle at a range of 10–100 degrees with a 0.02 degree step width and 4 

degree/min scan speed. This resulted in the collection of intensity versus 2Ɵ diffraction 

angle for each sample. Diffraction data was then analyzed using PDXL2 software along 

with International Center for Diffraction Data (ICDD) crystallographic structure 

parameter database.  
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Figure 11.  Rigaku MiniFlex 600 X-ray diffractometer.  

 

3. Scanning Electron Microscopy  

A Zeiss NEON 40 field emission SEM (Figure 12) was used to determine the 

morphology of obsidian and tektite bulk, crushed, and LDHP samples. 

  

 
Figure 12.  Zeiss NEON 40 field emission scanning electron microscope. 

 

Bulk and crushed samples are electrically non-conducting and hence were coated 

with a 2-nm layer of Pt-20Pd using a Cressington 208HR high resolution sputter coater 

(Figure 13) for electron microscopy observations and kept overnight in Pelco 2251 

vacuum desiccator (Figure 14) before being placed in the SEM for analysis. Coated 

samples were observed under 20 KV with a 1.33 x 10–6 mA beam current. LDHP 

samples were observed under 5 KV with a 0.18×10-6 mA beam current. 
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Figure 13.  Cressington 208HR high resolution sputter coater. 

 

 
Figure 14.  Pelco 2251 vacuum desiccator. 

 

4. Energy Dispersive X-Ray Spectroscopy 

EDS analysis was conducted through an EDAX Pegasus Analysis system to 

determine the chemical composition of the samples. The EDAX system is mounted on 

the SEM described in the previous paragraph. EDS spectra and element mapping of 

samples were conducted under 20 KV with a 1.33×10-6 mA beam current. The elements 

present in the samples were quantified as oxides using the ZAF correction method 

available the Genesis Spectrum software.   

5. Transmission Electron Microscopy 

An FEI Tecnai Osiris TEM (Figure 15) was used to determine the morphology 

and chemical composition of obsidian and tektite crushed and LDHP samples. Crushed 
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(bulk) obsidian and tektite samples were dispersed in ethanol and 2–3 drops of each 

sample was placed on a lacey carbon-coated 400-mesh Cu TEM grid for analysis. 2–3 

drops of deionized water from LDHP treatment on bulk obsidian and tektite samples 

were placed on a lacey carbon-coated 400-mesh Cu TEM grid, dried overnight, and 

analyzed. All samples were observed under 200 KV with a 0.4 mA beam current.     

  

  
Figure 15.  FEI Tecnai Osiris transmission electron microscope. 
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III. RESULTS AND DISCUSSION 

A. BASE MATERIAL CHARACTERIZATION 

1. Obsidian 

The most common color of obsidian is black, although a wide range of colors are 

known to exist. Its color is dependent on crystal-structured inclusions that are a part of its 

composition [13], [14]. Optical microscopy of the polished sections showed evidence of 

inclusions distributed randomly throughout the surface (Figure 16). It is possible that 

some large inclusions were removed from the specimen during polishing leaving the 

appearance of porosity; however, these may also be gas bubbles trapped during the 

formation of obsidian.   

 

 
Figure 16.  Optical micrographs of polished sections of bulk obsidian showing 

inclusions and porosity. 

 

When a small sample of black obsidian was crushed, the resultant powder 

appeared light grey in color (Figure 17). This change in color may be due to larger 

inclusions separating from the powder during crushing. XRD analysis of the bulk and 

crushed obsidian samples showed an amorphous diffraction pattern with some minor 

peaks representing possible crystallinity (Figure 18). Quantitative XRD analyses of these 

patterns indicated the bulk obsidian contained 7.3% crystallinity and the crushed obsidian 

contained 9.5% crystallinity.   
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Figure 17.  Images of a bulk obsidian sample before (left) and after (right) 

crushing with a mortar and pestle. 

 

 
Figure 18.  XRD diffraction patterns of bulk (red) and crushed (blue) obsidian 

samples. 

 

EDS analysis of the bulk obsidian sample showed that this material consisted of 

76.34 wt% SiO2 with 13.21 wt% Al2O3, 1.06 wt% Fe2O3, and the remaining 

composition being made up of various oxides of Na, Mg, K, Ca, and Ti. Naturally 

occurring obsidian sourced from the northwestern United States contain a generally 

consistent chemical composition with some minor variation in its major oxides. 

According to Ericson et al. [10], these samples are rhyolitic obsidian having SiO2 greater 

than 66 wt%. Table 2 shows the average EDS chemical composition (calculated from 

spectra from three different locations) of the sample bulk obsidian and is compared with 

the reported [10] composition of a sample of rhyolitic obsidian sourced from Mt. St. 
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Helena in Calistoga, CA. Figure 19 shows the EDS spectrum (20KV, 200 sec acquisition 

time) of the bulk obsidian sample. EDS measurement contains approximately ±0.1 wt% 

error for major elements while the data in [10] is based on X-ray fluorescence 

spectrometry, which typically contains a ±0.05  wt% error [15].   

 

Table 2.   Chemical composition of bulk obsidian sample and rhyolitic 
obsidian [7]. 

 
 
 

 
Figure 19.  EDS spectrum of bulk obsidian sample. 

 

Secondary electron images and EDS mapping of bulk and crushed obsidian 

samples showed micron-sized Fe-rich and Al-rich oxide particles. X-ray mapping of the 

bulk obsidian sample showed a 20-µm Fe-rich oxide particle (Figure 20), while mapping 

of the crushed obsidian sample showed Fe-rich oxide particles in the range of 2–10 µm 
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and Al-rich oxide particles ranging from 2–8 µm (Figure 21). Of note are the greater 

instances of large Fe-rich oxide inclusions apparent in this particular crushed sample 

when compared to the bulk sample.  

 

 
Figure 20.  Secondary electron image of bulk obsidian sample (top). SEM-EDS 

mapping of same bulk obsidian sample showing Si distribution 
among the sample (bottom left) and Fe-rich oxide particles randomly 
distributed throughout the sample (bottom right). Note the large Fe-

rich particle on the top left section of the Fe-K map. 
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Figure 21.  Secondary electron image of a crushed obsidian sample (top left). 

SEM-EDS mapping showing Si distribution (top right), Fe-rich 
oxide particles (bottom left), and Al-rich oxide particles (bottom 

right). 

 

SEM-EDS analysis of the crushed obsidian samples showed a variation in its 

chemical composition from the bulk sample depending on the particle selected. For 

example, in the same secondary electron image as in Figure 21, Figure 22 shows one 

particle containing 73.49 wt% of Fe2O3, while another particle contains 97.11 wt% 

(Table 3 and Figure 23 provide chemical composition and EDS spectra, respectively). 

This is not unexpected as the electron-sample interaction volume when using EDS makes 

the analysis of small particles highly influenced by the matrix elements. Thus, the EDS 

spectra from inclusion detached from the bulk obsidian will show the presence of Si and 

other elements. SEM-EDS mapping provides good qualitative results of the elemental 

distribution in these samples. Hence, these results support the notion of transition 

element-rich inclusions being separated from the bulk during crushing. 

In the polished samples, the inclusions appeared as different colored particles 

under the optical microscope due to the absorption contrast. Upon crushing, many of 

these inclusions, especially the larger ones, detach from the mostly SiO2 glassy matrix of 

obsidian leaving the majority of the obsidian powder to reflect most of the visible light 
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incident on it. Thus, the crushed power appeared gray rather than black like the bulk 

sample where a large percentage of light reflected from the SiO2 matrix is presumably 

absorbed by the inclusions contained within. 

 

  
Figure 22.  Secondary electron image of a crushed obsidian sample showing Fe-

rich and Al-rich oxide particles circled in red. 

 

Table 3.   Chemical composition of Fe-rich and Al-rich oxide particles from 
Figure 22. 
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Figure 23.  SEM-EDS spectra of a Fe-rich oxide particle (left) and Al-rich oxide 

particle (right).  

 

TEM analysis of the crushed obsidian sample provided bright field scanning 

transmission microscopy (BF-STEM) and high-angle annular dark field scanning 

transmission electron microscopy (HAADF-STEM) images (Figure 24). In Figure 24, 

BF-STEM images show heavy elements in dark contrast while HAADF-STEM images 

provide bright contrast to elements with high atomic number. In these images, the 

obsidian particles appear as mostly large and thin fragments with sharp edges due to the 

glassy nature. The dark contrast in the BF-STEM images and the corresponding bright 

contrast in the HAADF-STEM images arise from the mass thickness as well as atomic 

number contrast (Z-contrast). From these images alone, it is difficult to conclude the 

nature of these fine particles. As an example, three particles marked with arrows 1, 2, and 

3 are discussed. Scanning transmission electron microscopy energy dispersive X-ray 

spectroscopy (STEM-EDS) mapping of this area is therefore very useful in providing 

additional information towards understanding the nature of these regions. STEM-EDS 

mapping showed nm-sized oxide particles rich in Ti, Fe, and Al within larger SiO2 

particles. In Figure 25, STEM-EDS mapping shows Ti-rich oxide particles in the range of 

40–80 nm and 700-nm Al-rich oxide particle. This evidence suggested that bulk obsidian 

contains various oxides embedded within its amorphous SiO2 matrix. Clearly, particle 1 

is a fine nm-sized piece of SiO2, particle 2 in an Al-rich particle presumed to be Al2O3, 

and particle 3 is a Ti-rich particle presumed to be TiO2. Many such areas were examined 

by STEM-EDS and nm-sized oxide inclusions enriched in Na, Al, Ti, or Fe were evident. 
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Figure 26 provides STEM-EDS mapping of another area showing particles rich in Si (400 

nm in size) and Fe (80 nm in size).   

 

 
Figure 24.  BF-STEM (left) and HAADF-STEM (right) images of crushed 

obsidian sample particles. 

 

     
Figure 25.  STEM-EDS mapping showing oxide particles rich in Si (top right), 

Ti (bottom left), and Al (bottom right).  
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Figure 26.  STEM-EDS mapping showing oxide particles rich in Si (bottom left) 

and Fe (bottom right). 

2. Tektite 

Like obsidian, the color of tektite also depends on the crystal-structured inclusions 

embedded in its composition with the basic color being green or greenish-blue and some 

in black or brown [16]. Optical microscopy showed the absence of inclusions, however 

porosity was clearly evident throughout the samples (Figure 27).    

   

 
Figure 27.  Optical Micrographs of Polished Sections of Bulk Tektite Samples 

showing Porosity. 
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When the black tektite sample was crushed with a mortar and pestle, the resultant 

powder also appeared grey in color, but with a hint of yellow (Figure 28). XRD analysis 

of a bulk and crushed tektite sample also showed an amorphous diffraction pattern with 

few minor peaks (Figure 29). In this case, Figure 29 shows that these samples appeared to 

be fully amorphous and is likely that the small volume fraction in these samples were too 

small to be detected by XRD. Further quantitative XRD analyses of these patterns 

indicated the bulk tektite contained 1.3% crystallinity and the crushed tektite contained 

7.4% crystallinity. However, a separate bulk tektite sample showed the majority being 

crystalline in structure with calcite (CaCO3), aluminum silicate (Al2O3-SiO2), and 

sodium aluminum silicate (Na1.15Al1.15Si0.85O4) as the identified peaks (Figure 30). In 

this particular sample, the crystallinity was determined to be 70%. This observation 

suggests this sample’s inhomogeneity is a result of how these materials are formed [17]. 

Thus, some areas contained high amounts of minerals (crystalline) while other areas are 

almost purely glassy in nature. 

 

 
Figure 28.  Images of a bulk tektite sample before (left) and after (right) 

crushing with a mortar and pestle. 
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Figure 29.  XRD diffraction patterns of bulk (green) and crushed (orange) tektite 

samples. 

 

 
Figure 30.  XRD diffraction pattern of bulk tektite sample with 70% 

crystallinity. 

 

SEM-EDS analysis of the bulk tektite sample in this study showed this material 

consists of 73.04 wt% SiO2 with 12.34 wt% Al2O3, 5.98 wt% FeO, and the remaining 

composition being made up of various oxides. Tektites from Indonesia come from the 

Australasian strewn field, which is comprised of Australia, Thailand, Laos, Cambodia, 

Vietnam, Indonesia, and Philippines [18]. According to Chapman [19], tektites from the 
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Australasian strewn field showed minor variations in their major oxide composition 

depending on the locality the sample originated from. Table 4 shows the average EDS 

chemical composition (calculated from spectra from three different locations) of the bulk 

tektite sample and a sample of Australasian tektite from Java (Note: FeO was used in this 

table to compare the sample with the reference, future chemical compositions will use 

Fe2O3). Figure 31 shows the EDS spectrum (20KV, 200 sec acquisition time) of the bulk 

tektite sample. In this study, compared to obsidian, tektite appeared richer in Fe, Ti, Ca, 

and Mg, but poorer in Na and K. These differences in compositions may be related to 

volcanic origin of obsidian and the formation of tektite from meteoritic impact on the 

surface of the earth, to include the geographic areas were these events occur.  

 

Table 4.   Chemical composition of bulk tektite sample and tektite sample J71 
Sangiran Java [19]. 
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Figure 31.  EDS Spectrum of Bulk Tektite Sample. 

 

Secondary electron images and EDS mapping of the crushed tektite sample 

showed micron-sized Fe-rich and Al-rich oxide particles. Mapping of the bulk tektite 

sample in the SEM did not show any oxide particles rich in transition elements in the 

areas analyzed. It was presumed due to the sparse nature of large inclusions in tektite, it 

was difficult to locate inclusions on the sample surface. Figure 32 shows secondary 

electron images of the surface of a bulk tektite sample with evidence of porosity (as 

indicated by red arrows). Similar to the bulk obsidian sample, some of these pores may 

have contained inclusions that possibly fell out during sample preparation. Figure 33 

shows SEM-EDS maps of the crushed tektite sample with a 4-µm Fe-rich oxide particle 

and two Al-rich oxide particles approximately 3–4 µm in size. As in the case of obsidian, 

this observation also suggests the separation of heavy element-rich inclusions being 

separated from the bulk during crushing of tektite. 
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Figure 32.  Secondary electron images showing porosity in the surface of a 

polished bulk tektite sample. 

 

 
Figure 33.  Secondary Electron image of a crushed tektite sample (top left). 

SEM-EDS mapping showing Si distribution (top right), Fe-rich 
oxide particle (bottom left), and Al-rich oxide particles (bottom 

right). 

 

Figure 32 provides two secondary electron images of two distinct areas of the 

crushed sample. EDS analysis was performed on the entire area of Figure 34(a) and on a 

section of a crushed tektite particle (red box in Figure 34(b)). Quantitative EDS analysis 

of the bulk tektite sample and the two areas in Figure 32 showed a slight variation of all 

the oxides listed in its chemical composition compared to the bulk tektite sample (Table 
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5). Figure 35 shows the EDS spectra of the crushed tektite sample and crushed tektite 

particle, which appear nearly identical. These observations indicate that the act of 

crushing mostly turns the bulk tektite into smaller particles of similar chemical 

composition. Additionally, the separation of transition element-rich inclusions during 

crushing may explain the variation of the chemical composition observed in these 

samples. 

 

 
Figure 34.  Secondary electron images showing (a) area of crushed tektite and 

(b) crushed tektite particle analyzed. Red box indicates particle 
analyzed for Table 4 and Figure 35. 

 

Table 5.   Chemical Composition Comparison between Bulk Tektite, Crushed 
Tektite Area, and Crushed Tektite Particle. 
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Figure 35.  SEM-EDS spectra of (a) crushed tektite area and (b) crushed tektite 

particle corresponding to Figure 32. 

 

TEM analysis of the crushed tektite sample BF-STEM and HAADF-STEM 

images (Figure 36) with particles that appeared to contain transition elements as a result 

of the contrast among the particles. As shown in Figure 36, particle 1 is a nm-sized piece 

of SiO2, particle 2 is Ti-rich particle presumed to be TiO2, and particle 3 is a an Al-rich 

particle presumed to be Al2O3. Figure 37 shows the corresponding STEM-EDS maps to 

Figure 36 with several larger particles rich in Si ranging from 250–600 nm, multiple Ti-

rich oxide particles in the range of 80–100 nm and two Al-rich oxide particles in 100–400 

nm range. STEM-EDS maps did not show any Fe-rich particles in the various areas 

analyzed, but similar to the crushed obsidian sample, did show nm-sized oxide inclusions 

enriched in Na, Al, or Ti. This observation also suggested that bulk tektite contains 

various oxides embedded within the amorphous SiO2 matrix.  

 



 33 

 
Figure 36.  BF-STEM (left) and HAADF-STEM (right) images of crushed 

tektite particles. Scale bar 500 nm. 

 

 
Figure 37.  STEM-EDS mapping showing oxide particles rich in Si (top right), 

Ti (bottom left), and Al (bottom right). 

 



 34 

B. POST-LDHP MATERIAL CHARACTERIZATION 

1. Obsidian 

a. Studies on Sample Surface after LDHP 

Figure 38 shows the effects of LDHP treatment on obsidian (sample ID B7). Each 

treated area (six in total) in this sample was exposed to 5,000 pulses from an excimer 

laser using the following parameters: 248-nm laser, varying fluence, 0.6 J/pulse, and 25-

ns pulse duration (shooting sequence with area 1 using the least fluence and area 6 using 

greatest fluence) [20]. Laser energy was maintained at approximately 0.6 J, but spot area 

was adjusted so that the fluence ranged from approximately 2 - 10 J/cm2. At none of 

these fluences were the 248-nm laser pulses efficient in removing material. As can be 

seen from the photograph in Figure 38, LDHP produces craters on the sample surface 

with a few small areas left optically white/translucent. SEM analysis of the treated areas 

clearly show the removal of material from the sample surface (Figure 39). At lower 

magnification, each crater showed similar characteristics of what appears to be a 

spallation effect evidenced by pits and cleavage-like marks where the laser pulses 

presumably struck the surface (Figure 39(a)) removing material. It is assumed that the 

appearance of deeper/larger pits is a result of multiple laser pulses striking the same area. 

At higher magnification, relatively long (> 50 μm) and thin (< 1 μm) cuts were visible 

within the treated areas (Figure 39(c)) along with the appearance of material 

solidification after melting (Figure 39(d)). At these particular laser parameters, it 

appeared laser pulses may have raised the temperature enough to melt the material and 

penetrate the bulk. Given the number of laser pulses striking the surface, the surface of 

the material may have increased in temperature over the course of laser processing. This 

may have enabled laser pulses towards the end of processing to create these cuts. 
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Figure 38.  Post-LDHP obsidian (sample ID B7) showing six areas (red arrows) 

exposed to 5000, 248-nm laser pulses per crater.  
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Figure 39.  Secondary electron images showing effects of LDHP treatment on 

the surface of obsidian (sample ID B7). (a) Border of treated area 6. 
(b) Untreated surface between treated areas 4 and 5. (c) Increased 

magnification in the center of treated area 5 showing cuts 
presumably made by laser pulses. (d) Increased magnification of 

section in (c) showing the appearance of material solidification after 
melting. 

 

Figure 40 shows the effects of LDHP on obsidian (sample ID B9) using a 

different set of laser parameters. This area was exposed to 300 pulses from a frequency-

tripled neodymium-doped yttrium lithium fluoride and aluminum-phosphate glass-1 

(Nd:YLF&APG1) laser using the following parameters: 351-nm laser, 3.5 J/cm2 fluence, 

and 15-ns pulse duration [20]. LDHP parameters used on this sample left the entire 

treated area optically white/translucent with what appeared to be small, colorless crystals. 

EDS analysis performed on the untreated and treated areas showed a slight change among 

the major oxides (Table 6 and Figure 41). This change may be attributed to the typical 

minor variation seen in the chemical composition throughout obsidian.      
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Figure 40.  Image of LDHP treatment on surface of obsidian (sample ID B9). 

Treated area optically white/translucent in color from exposure to 
300, 351-nm pulses.  

 

Table 6.   Comparison of chemical composition between untreated and LDHP 
treated areas of obsidian sample B9. 
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Figure 41.  EDS spectra of obsidian sample B9 showing untreated area (left) and 

LDHP treated area (right).  

 

b. Studies on Particles in Deionized Water after LDHP 

In a separate LDHP experiment, an obsidian sample (sample ID BC14) 

submerged in deionized water was targeted with 200 laser pulses using an 

Nd:YLF&APG1 glass laser with the following laser parameters: 1053-nm laser, 5 J/cm2 

fluence, and 17-ns pulse duration [20]. After completion of this experiment, heavier 

particles that accumulated on the bottom of the LDHP apparatus was collected and left to 

air dry on a paper sheet overnight for analysis. As an example, Figure 42 shows an image 

of particles from an LDHP experiment on a separate obsidian sample not analyzed in this 

study. As seen in the image, these particles appeared optically white/translucent.  
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Figure 42.  Image of particles collected from post-LDHP treatment on obsidian 

sample. Note the optically white/translucent appearance of the 
particles. Source: [21].  

 

The particles generated from the obsidian sample (sample ID BC14) used in this 

study also appeared optically white/translucent. Secondary electron images and EDS 

analysis showed Si-rich oxide particles ranging from 1–25 μm and Fe-rich oxide particles 

ranging from 1–5 μm in size (Figure 43). Figure 44 shows two particles (as indicated by 

the red box), each from two different areas in the same sample, analyzed for chemical 

composition. Table 7 and Figure 45 provide the results of the EDS analysis and show a 

similar chemical composition with some variation in oxides. When compared to the bulk 

obsidian sample studied earlier, this suggests LDHP, like crushing, turns the bulk 

material into smaller particles of similar chemical composition.  
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Figure 43.  Secondary electron image of post-LDHP obsidian particles collected 

from sample BC14 (top). SEM-EDS mapping showing Si 
distribution (bottom left) and Fe-rich oxide particles (bottom right). 

 
 

 
Figure 44.  Secondary electron images showing two different post-LDHP 

obsidian particle areas from sample BC14 at x150 magnification 
(left) and x500 magnification (right). Red boxes indicate particle 1 

(left) and particle 2 (right) analyzed for Table 6. 
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Table 7.   Comparison of chemical composition between bulk obsidian sample, 
post-LDHP particle 1, and post-LDHP particle 2. 

 
 

 

 
Figure 45.  EDS spectra of particle 1 (left) and particle 2 (right) from post-

LDHP obsidian particle sample BC14. 

 

TEM analysis was conducted on the suspended particles in deionized water 

(sample ID BC14SN) collected after the same LDHP experiment described earlier on 

obsidian sample BC14. BF-STEM and HAADF-STEM images (Figure 46) on this 

sample showed that many fine particles are present in the deionized water after LDHP. In 

general, there were many particles that appeared to contain heavy elements. STEM-EDS 

maps (Figure 47) showed these particles rich in Si and Al 400 nm in size, multiple Ti-rich 

oxide particles in the range of 50–200 nm, and multiple Fe-rich oxide particles ranging in 

100–300 nm. From Figure 46, particle 1 is presumed to contain SiO2 and Al2O3, particles 
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labeled 2 are presumed to be TiO2 and the three particles labeled 3 are presumed to be 

Fe2O3. Generally, particles rich in Si were observed to have a polyhedral/angular 

morphology and were observed mostly as particles closer to 1 µm in size. Ti-rich 

particles were observed in spheroidal shapes usually in the 150–500 nm range and often 

in small clusters. Fe-rich particles were observed in a large size range, 50 nm – 1 µm, 

typically in a spheroidal shape, and also observed in small clusters. Finally, particles rich 

in Al were observed in the 25–500 nm size range, in polyhedral/angular shapes, and often 

in the upper end of the size range in small clusters. The general observation was that 

there were a greater number of transition element-rich oxide particles in this sample 

compared to the number of Si-rich oxide particles. 

 

 

 
Figure 46.  BF-STEM (left) and HAADF-STEM (right) images of post-LDHP 

obsidian particles in sample BC14SN. Scale bar 500 nm. 
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Figure 47.  STEM-EDS mapping of post-LDHP obsidian particles in sample 

BC14SN showing oxide particles rich in Si (middle left), Ti (middle 
right), Fe (bottom left) and Al (bottom right).  

 

High-resolution transmission electron microscopy (HRTEM) images of the same 

sample clearly showed particles with crystallinity. An example of an 80-nm inclusion 

contained in a relatively large obsidian particle is shown in Figure 48(a). Figure 48(b) 

shows the inclusion at an increased magnification with an 18-nm particle clearly defined 

at its outer edge. Figure 48(c) shows the outer edge of the 18-nm particle at increased 

magnification displaying lattice fringes and embedded in an amorphous matrix. Figure 49 
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shows the analysis of a different particle in the same sample. Using Digimicrograph 

software, the lattice plane spacing was measured and the average value of these lattice 

planes was determined to be 0.254 nm. Further investigation reveals that this plane 

spacing indicates a type of iron oxide. Diffraction data software provided potential 

candidates to identify the specific type of iron oxide, however it is inconclusive to 

pinpoint the oxide since the particles were exposed to water for an extended period of 

time and the oxidation state might have changed: 

 1. FeO in <111> direction (0.2533 nm d-spacing) 

 2. Fe2O3 in <110> direction (0.2519 nm d-spacing) 

 3. Fe3O4 in <311> direction (0.2498 nm d-spacing) 

 *Fe in <111> direction (0.2125 nm d-spacing) 
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Figure 48.  HRTEM images showing crystallinity in a particle among an 

amorphous matrix from post-LDHP obsidian particles in sample 
BC14SN. (a) 80-nm inclusion within post-LDHP obsidian particle. 

(b) Increased magnification of outer edge of inclusion in (a) showing 
18-nm particle. (c) Increased magnification of outer edge of particle 
in (b) showing lattice planes with average plane spacing determined 

to be 0.254 nm. 

 

 
Figure 49.  HRTEM image of particle with crystallinity from post-LDHP 

obsidian in sample BC14SN. Red box indicates area measured to 
determine chemical compound based on plane spacing. 
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These results suggest that the fine inclusions in these samples are crystalline and 

that the Fe-rich inclusions are one of the iron oxide. 

In summary, the bulk obsidian is mostly of the amorphous silica with smaller 

quantities of crystalline oxides in some variation. A color change was observed from 

black in its bulk form to light grey when crushed, suggesting the separation of embedded 

inclusions. SEM-EDS mapping of bulk and crushed forms showed micron-sized oxide 

particles rich in Fe and Al as small as 2 μm and as large as 20 μm. STEM-EDS mapping 

of the crushed obsidian showed nm-sized oxide particles rich in Si, Ti, Fe, and Al, 

between 40–800 nm, typically within larger SiO2 particles.  

Each bulk obsidian sample showed the formation of craters after LDHP treatment. 

SEM analysis of the craters showed cleavage-like marks suggesting spallation. Also 

observed was the appearance of material solidification after melting in the form of long, 

thin cuts within the craters on one sample. Optically white/translucent remnants with 

crystals on the treated surface were observed. Formation of the observed crystals suggests 

removed material, possibly in ionic form, precipitating and redeposited onto the surface. 

The larger/heavier particles collected after LDHP also appeared optically 

white/translucent. SEM-EDS analysis showed oxide particles rich in Si and Fe ranging 

from 1–25 μm, while analysis of other oxide particles showed a similar chemical 

composition to bulk obsidian. STEM-EDS mapping of the suspended particles showed 

greater quantities of what is presumed to be oxide particles rich in Si, Fe, Ti, and Al as 

small as 25 nm up to 1 μm. Overall, two general observations were made from these 

results: (i) fewer micron-sized SiO2 particles with various oxides embedded within and 

(ii) greater number of nm-sized oxide particles rich in Fe, Ti, and Al. When compared to 

analysis performed on the crushed samples, this observation also suggests the spallation 

effect of LDHP and the possible formation of precipitates.  

2. Tektite 

a. Studies on Sample Surface after LDHP 

Figure 50 demonstrates the effects of LDHP treatment on tektite (sample ID 

21DEC15 Tektite). Areas 1 and 2 in this sample were exposed to 100 pulses and area 3 
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was exposed to 200 pulses from a neodymium-doped yttrium aluminum garnet 

(Nd:YAG) laser using the following parameters: 1065-nm laser, 40 J/cm2 fluence, 2.6 

J/pulse, and 10-µs pulse duration [20]. In comparison to LDHP treatment on obsidian 

with a different set of laser parameters, a noticeable difference was observed in the 

appearance and depth of the craters. Areas 1 and 2 were measured at a depth of 643.61 

µm and 636.42 µm, respectively, and area 3 at 971.68 µm (measurements were 

performed with a Keyence VHX-5000 optical imaging profilometer at LLNL [22]). With 

relatively the same depth in craters 1 and 2, and a nearly 300 µm increase in depth in 

crater 3, the difference was attributed to the 100-pulse increase used in area 3. 

Additionally, the surface of each crater showed the appearance of colorless crystals. 

Figure 51 shows an image of the crystals in crater 3 as an example. 

 

 
Figure 50.  Post-LDHP tektite showing three areas exposed to 100 (1 and 2) and 

200 (3), 1065-nm laser pulses per crater. Source: [22].  

  



 48 

 
Figure 51.  Image of crater 3 showing the appearance of crystals in post-LDHP 

tektite sample. Image captured by a Keyence VHX-5000 optical 
imaging profilometer at LLNL. Source: [20].  

 

SEM analysis of the treated areas showed material removed from the sample 

surface (Figure 52). At lower magnification, each crater showed similar characteristics of 

cleavage-like marks where the laser pulses presumably struck the surface. At higher 

magnification, there appears to be holes approximately 3–6 µm in diameter surrounded 

by evidence of re-solidified material after melting (Figure 53). Similar to the post-LDHP 

obsidian, these laser parameters may have also raised the temperature enough to melt the 

material and penetrate the bulk. Although a significantly less number of laser pulses were 

used on this sample, the surface of the material may have increased in temperature over 

the course of the laser processing. Again, this may have enabled laser pulses towards the 

end of processing to penetrate the bulk with multiple pulses creating the holes observed. 
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Figure 52.  Secondary electron images showing effects of LDHP treatment on 

the surface of tektite (sample ID 21DEC15 Tektite). Image of border 
in area 1 showing treated and untreated sections (top left). Image of 

border in area 2 showing treated and untreated sections (bottom left). 

 

 
Figure 53.  Secondary electron images showing effects of LDHP treatment on 

the surface of tektite. Treated surface in area 3 (top right). Increased 
magnification in the center of area 3 showing a hole in the surface 
and the appearance of material solidification after melting (bottom 

right). 
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EDS analysis was performed on the treated (six areas) and untreated (six areas) 

areas in and around each crater and averaged. Untreated areas were chosen to be as close 

to the rim of the craters (treated areas) as practically as possible. This analysis showed 

signification changes in chemical composition among the major oxides (Table 8). Based 

on a comparison of the untreated areas and the treated areas in each crater, an increase in 

SiO2, Fe2O3, K2O, CaO, and TiO2 was observed, and a decrease in MgO and Na2O. For 

Al2O3, a decrease was observed in craters 1 and 2, but an increase in crater 3. To explain 

this, material inhomogeneity is not considered due to the vast differences when 

comparing this observation to chemical composition of the bulk tektite. It is possible 

particles created by spallation of the surface may be precipitating in and around the 

treated surface during LDHP.      

 

Table 8.   Comparison of chemical composition between bulk tektite sample, 
average of post-LDHP untreated areas, crater 1, crater 2 and crater 3. 

 
 

b. Studies on Particles in Deionized Water after LDHP  

Secondary electron images and SEM-EDS analysis of the suspended particles in 

deionized water showed oxide particles rich in Si between 100 nm and 2 µm in size, Ti-rich 

oxide particles ranging from 100–500 nm, Fe-rich oxide particles ranging from 50–250 nm, 

and Al-rich oxide particles 2–3 µm in size (Figure 54). Thus, it appears that there are two 

types of SiO2 particles: (i) larger micron-sized particles with sharp edges and (ii) fine 

spheroidal particles as can been seen in the Si SEM-EDS image in Figure 54. Figure 55 
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shows three particles (as indicated by the red boxes) analyzed for chemical composition. In 

this particular sample, Table 9 and Figure 55 show the difference in chemical composition 

among the particles: oxide particle 1 being Al-rich with 61.19 wt% Al2O3, oxide particle 2 

being Al-rich with 90.37 wt%, and oxide particle 3 rich in Fe with 76.26 wt% Fe2O3. This 

observation clearly showed the separation of transition element-rich particles from the bulk 

during LDHP. With many of the particles observed being in sub-micron size, it must be 

noted that the quantitative analysis must be carefully considered due to the large electron 

interaction volume and thus the matrix effects from the large tektite particle to which the 

inclusions are attached to. However, it is critical to note that EDS maps provide important 

clues towards the potential mechanism of LDHP by indicating that there are many particles 

rich in heavy elements such as Ti and Fe in the samples. 
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Figure 54.  Secondary electron image of post-LDHP tektite particles collected 

from deionized water (top). SEM-EDS mapping showing Si-rich 
oxide particles (middle left), Ti-rich oxide particles (middle right), 

Fe-rich oxide particles (bottom left) and Al-rich oxide particles 
(bottom right). 
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Figure 55.  Secondary electron image of post-LDHP tektite particles analyzed 

showing significantly different chemical compositions. Red boxes 
indicate particles analyzed. 

 

Table 9.   Comparison of chemical composition between bulk tektite sample, 
post-LDHP particle 1, post-LDHP particle 2 and post-LDHP particle 

3. 
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Figure 56.  EDS spectra of particle 1 (top), particle 2 (bottom left) and particle 3 

(bottom right) from post-LDHP tektite particle sample. 

 

TEM analysis on the same sample of suspended particles in deionized water 

showed particles that appeared to contain heavy elements based on BF-STEM and 

HAADF-STEM images (Figure 57). Figure 58 shows STEM-EDS maps of particles rich 

in Si in the range of 100–250 nm, a Ti-rich oxide particle 150 nm in size, Fe-rich oxide 

particles in the range of 100–250 nm and an Al-rich particle 100 nm in size. In Figure 57, 

based on the EDS maps, particles labeled 1 may be pieces of bulk tektite since it is 

presumed these particles contain SiO2, Fe2O3, and Al2O3. Particle 2 is presumed to be 

SiO2, particle 3 is presumed to be TiO2, particles 4 are presumed to be Fe2O3, and 

particle 5 is presumed to be Al2O3. Some particles rich is Si where observed to have a 

polyhedral/angular morphology and were observed mostly as particles closer to 1 µm in 

size. Interestingly, one also observes many fine, spheroidal SiO2 particles as well 
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identical to the observation in the earlier SEM-EDS maps. Ti-rich particles were 

observed in semi-spherical and polyhedral shapes usually in the 150–500 nm range. Fe-

rich particles were also observed in a large size range, 50 nm – 1 µm, usually in a 

polyhedral shape, and observed in larger clusters. Particles rich in Al were observed in 

the 25 – 500 nm size range, in polyhedral shapes, and often in the upper end of the size 

range in larger clusters. Based on these observations, it appeared that the larger, sharp-

edged Si-rich particles seen in these samples may be pieces of tektite removed from the 

bulk during LDHP. On the other hand, the smaller, spheroidal-shaped Si-rich particles 

may potentially be the combining of precipitate Si particles in the deionized water during 

LDHP.  

 

 
Figure 57.  BF-STEM (left) and HAADF-STEM (right) images of crushed 

tektite particles. Scale bar 500 nm. 
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Figure 58.  STEM-EDS mapping showing oxide particles rich in Si (middle 

left), Ti (middle right), Fe (bottom left) and Al (bottom right).  

 

In summary, similar to bulk obsidian, the bulk tektite studied mostly consisted of 

the amorphous silica with smaller quantities of crystalline oxides. When crushed, a color 

change was also observed from black in its bulk for to light grey (in this case with a hint 

of yellow) again, suggesting the separation of inclusions from the bulk. SEM-EDS 

mapping of crushed tektite showed micron-sized oxide particles rich in Fe and Al in the 
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range of 1–4 μm. STEM-EDS mapping of the crushed tektite showed oxide particles rich 

in Si, Ti, and Al, between 50 nm – 2 μm, typically within larger SiO2 particles.  

After LDHP treatment, the bulk tektite sample showed the formation of three 

craters with larger crystals on the surface when compared to the bulk obsidian samples. 

Similarly, the cleavage-like appearance observed on the treated surface suggest 

spallation. Also observed, in the form of small holes, was the appearance of material 

solidification after melting indicating the generation of high-temperatures on the surface. 

The combination of translucent crystals and SEM-EDS chemical analysis of the untreated 

and treated surfaces suggests, again, removed material, possibly in ionic form, 

precipitating and redeposited onto the surface. SEM-EDS and STEM-EDS analysis of the 

suspended particles showed oxide particles rich in Si, Ti, Fe and Al ranging from 25 nm - 

2 μm, while analysis of other oxide particles showed a similar chemical composition to 

bulk tektite. Morphology of these particles were mostly polyhedral for larger particles 

and spheroidal for smaller particles. The general observations made were fewer micron-

sized SiO2 particles with various oxides embedded within and a greater number of nm-

sized oxide particles rich in transition metals. The observations made here further support 

the notion of the spallation effect of LDHP and the possible formation of precipitates. 

C. SUMMARY OF POST-LDHP PARTICLES OBSERVED 

Observation of the suspended particles (samples 21DEC15 Tektite and obsidian 

BC14SN) generated by LDHP, regardless of the laser conditions, showed a consistent 

pattern with regards to the type of oxide particle, size range, and morphology, with the 

difference being if particles were observed in clusters or not (Table 10). Sample BC14 of 

obsidian showed larger oxide particles, however, since this sample was collected from 

presumably heavier particles that accumulated on the bottom of the LDHP apparatus.  

The relatively larger particles of the glass found in the deionized water sampled 

collected after LDHP may be the result of spallation by laser pulses impacting the 

material surface. The fine particles on the other hand are perhaps the result of complex 

ions of the elements released into the liquid media that cluster to form fine particles or 

precipitates. These precipitates once formed may certainly undergo subsequent oxidation 
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in the water. Overall, the observations made through the multiple characterization 

techniques suggests that transition elements are preferentially released into the liquid 

media by LDHP.   

 

Table 10.    Summary of post-LDHP particles observed. 

 
 

To compare, the crushed samples were observed to contain greater instances of 

larger micron-sized particles with compositions similar to that of the bulk material. 

Additionally, much fewer instances of transition element-rich oxides were observed in 

both crushed obsidian and tektite samples.    

Figure 58 is provided to illustrate a preliminary idea for a possible mechanism of 

LDHP: (1) Laser impacts bulk material at designated laser parameters, (2) impact of laser 

forms crater at material surface creating a cloud of suspended particles and causing 

heavier particles to settle and collect below the material holding apparatus, and (3) 

suspended particles are a result of two events, (i) complex ions released into liquid media 

that combine to form fine particles/precipitates and (ii) spallation by laser pulses 



 59 

impacting the surface of the material. Further investigation is needed through future 

studies towards understanding the mechanism of LDHP and the creation of particles. 

 

 

 
Figure 59.  Diagram of possible mechanism of LDHP.  
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IV. CONCLUSION 

This study showed LDHP created nano- and micron-sized particles from two 

naturally occurring materials, obsidian and tektite. Multiple characterization techniques 

were used to determine the morphology, microstructure, and chemical composition of the 

base material, products of LDHP and its effects on the material surface.  

XRD data showed the bulk obsidian studied as mostly amorphous with some 

crystallinity. SEM-EDS analysis showed that bulk obsidian is a relatively heterogeneous 

material composed mostly of SiO2 with smaller quantities of oxides making up the rest of 

its chemical composition in some variation. When crushed, a color change was observed 

from black in its bulk form to light grey, suggesting separation of inclusions from its 

glassy matrix. SEM-EDS mapping of obsidian in bulk and crushed form showed micron-

sized oxide particles rich in Fe and Al as small as 2 μm and as large as 20 μm. STEM-

EDS mapping of the crushed obsidian showed nm-sized oxide particles rich in Si, Ti, Fe, 

and Al, between 40–800 nm, typically within larger SiO2 particles.  

After LDHP treatment, each bulk obsidian sample showed the formation of  

craters. One bulk sample contained a few small areas of the surface that appeared 

optically white/translucent while another bulk sample showed the entire surface as 

optically white/translucent. SEM analysis of these craters showed evidence of spallation 

from the cleavage-like appearance of the surface material removed to form each crater. 

Also observed was the appearance of material solidification after melting indicating the 

generation of high-temperatures on the surface assumed to be the result of repeated 

impact of pulses during laser processing. The larger/heavier particles collected after 

LDHP also appeared optically white/translucent. SEM-EDS chemical analysis and 

mapping showed oxide particles rich in Si and Fe, while analysis of other oxide particles 

showed a similar chemical composition to bulk obsidian. Similarly, STEM-EDS mapping 

of the suspended particles showed greater quantities of what are presumed to be oxide 

particles rich in Si, Fe, Ti, and Al. Generally, post-LDHP obsidian particles showed a 

varying range of particle sizes and morphology: (i) heavier particles collected from the 

bottom of the LDHP apparatus were observed to be between 1–25 μm with sharp, 
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polyhedral shapes and (ii) suspended particles were observed to be between 25 nm and 1 

μm in spheroidal and polyhedral shapes. Overall, two general observations were made 

based on these results: (i) fewer micron-sized SiO2 particles with various oxides 

embedded within and (ii) greater number of nm-sized oxide particles rich in Fe, Ti, and 

Al.  

Similar to the bulk obsidian, XRD data showed the bulk tektite studied as mostly 

amorphous with a varying degree of crystallinity. SEM-EDS analysis also showed that 

bulk tektite is a heterogeneous material composed mostly of SiO2 with smaller quantities 

of oxides making up the rest of its chemical composition in some variation. When 

crushed, a color change was also observed from black in its bulk for to light grey (in this 

case with a hint of yellow) again, suggesting the separation of inclusions from the bulk. 

SEM-EDS mapping of crushed tektite showed micron-sized oxide particles rich in Fe and 

Al in the range of 1–4 μm. STEM-EDS mapping of the crushed tektite showed oxide 

particles rich in Si, Ti, and Al, between 50 nm – 2 μm, typically within larger SiO2 

particles.  

After LDHP treatment, the bulk tektite sample showed the formation of craters. In 

this case, all three craters contained larger crystals on the surface when compared to the 

bulk obsidian samples. Similarly, SEM analysis of these craters showed evidence of 

spallation from the cleavage-like appearance of the surface material. Also observed, in 

the form of small holes, was the appearance of material solidification after melting 

indicating the generation of high-temperatures on the surface. Formation of the 

translucent crystals on the treated surface and SEM-EDS chemical analysis of the 

untreated and treated surfaces suggests, again, removed material, possibly in ionic form, 

precipitating and redeposited onto the surface. SEM-EDS analysis and mapping of the 

suspended particles showed oxide particles rich in Si, Ti, Fe and Si ranging from 50 nm - 

2 μm, while analysis of other oxide particles showed a similar chemical composition to 

bulk obsidian. STEM-EDS mapping of the suspended particles showed greater quantities 

of what are presumed to be oxide particles rich in Si, Fe, Ti, and Al between 25 – 250 

nm. Morphology of these particles were also observed to be mostly polyhedral for larger 

particles and spheroidal for smaller particles. Again, the general observations made were 
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fewer micron-sized SiO2 particles with various oxides embedded within and a greater 

number of nm-sized oxide particles rich in transition metals.  

Evidence suggests LDHP may create particles in two ways: (i) larger particles by 

way of spallation from laser pulses impacting the material surface and (ii) complex ions 

of the elements released into the liquid media that cluster to form fine particles or 

precipitates.        
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V. FUTURE WORK 

The findings in this study look promising in determining the mechanism of LDHP 

in the formation of particles. More work is certainly needed in observing the effects on 

LDHP on other types of materials, including a more in depth study on how the different 

laser parameters effects the formation of particles and the formation of craters on the 

material surface.  

The use of surrogate materials will greatly help in validating procedures and 

simplify characterization. The materials in this study were shown to be relatively 

inhomogeneous based on analysis of different sections of the same sample. Homogenous 

materials can ensure chemical consistency throughout its composition, which will help 

directly associate observations made before and after LDHP with testing methods used. 

This study only observed particles derived from LDHP in deionized water. 

Analysis of particles in other solutions may also help determine how fine particles are 

formed. Additionally, this study will require advanced methods in particle size analysis 

and further research in this area may potentially correlate the size of the particles with the 

laser parameters and type of material processed.  

XRD analysis was not performed on the collected post-LDHP particles due to 

insufficient quantity. With enough particles, characterization with XRD will determine 

crystalline phases present including crystallite size analysis. Electron energy loss 

spectroscopy (EELS) is another technique that can provide quantitative analysis of low 

atomic number elements including their chemical bonding states in samples with multi-

element oxides [23].      

  



 66 

THIS PAGE INTENTIONALLY LEFT BLANK  

  



 67 

LIST OF REFERENCES 

[1]  Nuclear Forensics Support, IAEA Nuclear Security Series No. 2, International 
Atomic Energy Agency, Vienna, Austria, 2006, pp 1–3.  

 
[2]  “Nuclear Forensics: Role, State of the Art, Program Needs,” Joint Working Group 

of the American Physical Society and the American Association for the 
Advancement of Science, Washinton DC, 2008. 

 
[3]  N. Sharp et al., “Rapid analysis of trinitie with nuclear forensic applications for 

post-detonation material analyses,” J. of Radioanalytical and Nucl. Chemistry, 
vol. 302, no. 1, pp. 57–67, Oct. 2014.  

 
[4]  R. P. Mariella Jr et al., “Laser comminution of submerged samples,” J. of Appl. 

Physics, vol. 114, no. 1, May 2013.  
 

[5]  S. K. Menon et al., Characterization of Particles formed via Laser-Driven 
Hydrothermal Processing, unpublished.  

 
[6]  R. P. Mariella Jr and Y. M. Dardenne, “Nuclear Radiation Cleanup and Uranium 

Prospecting,” U.S. Patent 9 250 353 B2, Feb. 2, 2016. 
 

[7]  R. P. Mariella Jr et al., “Laser-Driven Hydrothermal Processing,” International 
Patent Application PCT/US2014/011120, Jan. 10, 2014. 

 
[8]  R. P. Mariella Jr, private communication, May 2016.  

 

[9]  G. N. Eby et al., “Trinitite redux: Mineralogy and petrology,” Amer. Minerologist, 
vol. 100, no. 2–3, pp. 427–441, Feb. 2015.  

 
[10]  J. E. Ericson et al., “Chemical and physical properties of obsidian: A naturally 

occuring glass,” J. of Non-Crystalline Solids, vol. 17, no. 1, pp. 129–142, Jan. 
1975.  

 
[11]  J. A. O’Keefe, “Natural glass,” J. of Non-Crystalline Solids, vol. 67, no. 1, pp. 1–

17, Sep. 1984.  
 

[12]  G. H. R. Von Koenigswald, “The Problem of Tektites,” Space Sci. Rev., vol. 3, 
no. 3, pp. 433–446, Oct. 1964.  

 
[13]  J. Miller. Obsidian is hot stuff [Online]. Available: 



 68 

http://volcano.oregonstate.edu/book/export/html/205 
 

[14]  C. Ma et al., “The Origin of Color in “Fire” Obsidian,” The Can. Mineralogist, 
vol. 45, no. 1, pp. 551–557, Jun. 2007.  

 
[15]  N. W. Bower, “Optimization of Precision and Accuracy in X-Ray Flourescene 

Analysis of Silicate Rocks,” Appl. Spectroscopy, vol. 39, no. 4, pp. 697–703, Jul. 
1985.  

 
[16]  A. N. Thorpe and F. E. Senftle, “Submicroscopic spherules and color of tektites,” 

Geochimica et Cosmochimica Acta, vol. 28, no. 6, pp. 981–994, Jun. 1964.  
 

[17]  C. Koeberl, “Tektite origin by hypervelocity asteroidal or cometary impact: 
Target rocks, source craters, and mechanisms,” Geological Society of America, 
Inc., Boulder, CO, Special Paper 293, 1992. 

 
[18]  R. Akhter, N. Shirai and M. Ebihara, “Chemical characteristics of dalat tektites,” 

in 45th Lunar and Planetary Science Conference, Houston, TX, 2014.  
 

[19]  D. R. Chapman, “Australasian Tektite Geographic Pattern, Crater and Ray of 
Origin, and Theory of Tektite Events,” J. of Geophysical Res., vol. 76, no. 26, pp. 
6309–6338, Sep. 1971.  

 
[20]  R. P. Mariella Jr, private communication, Apr. 2016.  

 
[21]  R. P. Mariella Jr, private communication, Oct. 2015.  

 
[22]  R. P. Mariella Jr, private communication, Dec. 2015. 

  
[23]  S. K. Menon, Statement of Work: Characterization of Particles formed via Laser-

Driven Hydrothermal Processing, unpublished.  
 
  



 69 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. motivation
	B. background
	C. focus of present study
	D. Approach

	II. experimental methods
	A. materials and equipment
	1. Obsidian Samples
	2. Tektite Samples
	3. Sample Preparation For Analysis

	B. characterization techniques
	1. Optical Microscopy
	2. X-Ray Diffractometry
	3. Scanning Electron Microscopy
	4. Energy Dispersive X-Ray Spectroscopy
	5. Transmission Electron Microscopy


	III. RESULTS AND DISCUSSION
	A. Base material characterization
	1. Obsidian
	2. Tektite

	B. POST-LDHP MATERIAL CHARACTERIZATION
	1. Obsidian
	a. Studies on Sample Surface after LDHP
	b. Studies on Particles in Deionized Water after LDHP

	2. Tektite
	a. Studies on Sample Surface after LDHP
	b. Studies on Particles in Deionized Water after LDHP


	C. summary of post-ldhp particles observed

	IV. conclusion
	V. future work
	List of References
	initial distribution list



